The DiaryJournal of anthe Inmaku Developer

Part 1 of the Epic Saga

Bitzeralisis
Estimated time spent before Day 5: 10:00

Day 5 (7/29)
10:42 AM
• Beginning of day. Inmaku has the small prompt that asks for the resolution of the game. The game fades the loading screen in and out. There’s a bullet pattern that I call Love Sign “Andromeda Galaxy,” which is probably Marisa’s or something. There is also Sanae. And a hitbox. Basic invincibility functionality and death / death sequence functionality is there. Also autocancel. Cancel effects aren’t working properly, though. The current bullet types are SHOTs, ACCSHOTs, PCSHOTs. I doubt I’ll need more bullet types. Bullets have flags for additive blend, cancellability, and absorbability. They can also move according to vector or Cartesian coordinate systems, which are interchangeable.
• Started programming.

10:47 AM
• Fixed the problem with bullet cancel effects; I forgot to add a glLoadIdentity(); before drawing them.

11:15 AM
• Now the Projectile class creates cancel effects itself when needed, instead of returning a UM_FADE message and expecting the main loop to create a cancel effect for it. Correspondingly, cancel effect creation code has been removed from the main loop. The message switch became a lot simpler henceforth.

11:25 AM
• I am going to transfer some Projectile class (and derived class) methods into Projectile.cpp to get rid of some header-order screwageness and extern declarations. Also it’s a bit neater.

11:34 AM
• Done with that. It’s interesting having a journal, since I can see how much time I spent on different things. This took a lot shorter than I expected, actually.
• I am now going to do the same thing with the Player class.
• And also the cancel effect’s class.

11:46 AM
• Done.

11:59 AM
• Finished rearranging stuff and debugged the program.

12:06 PM
• Improved ResizablePointerArray.
• Stopped programming. Time spent: 1:24
5:03 PM
• Started programming.

5:22 PM
• Was going to define the energy bolt shots, but I decided that supershot.png was too badly defined. I’m making my own shotsheet4.gfx now.

5:40 PM
• Finished editing supershot, made supershot2.png, which contains eight colors of energy shots and bubbles. Also their coordinates in the image make more sense.

6:05 PM
• Finished redefining bubbles and defining energy shots, and debugging problems with them. Also fixed problems with bubbles’ cancel effects. There is still an issue of how it looks kind of strange when a bubble is autocancelled, however, but I’ll fix that later.

6:11 PM
• Compiled a release version with the new shotsheet4.gfx included.
• Stopped programming. Time spent: 1:08
Day 6 (7/30)

10:28 AM
• Started programming.
• Added a switch statement in ShotColorToDelayColor for bubbles.

10:34 AM
• Fixed bubble autocancel issue.

10:55 AM
• Changed stuff to internally store degrees instead of radians, to make coding danmaku easier.
• Okay, I guess it’s time to start on something major now. Namely, Lasers! Yeah, lasers are quite challenging to program, not only because there’s three distinct types of them or because of their crazy drawing functions but also because they’re intrinsically complex anyways. Wish me luck!

11:29 AM
• Taking a break. Time spent: 1:01
11:47 AM
• Started programming again, still tackling lasers.

12:30 PM
• Stopped programming. Done with sinuate lasers’ update and check player collision methods. Need to work on draw() next. Time spent: 0:43
8:24 PM
• Started programming. Still working on lasers.

9:12 PM
• Finished an incomplete but testable version of the sinuate laser. Let’s see if it works…
• …nothing shows up on the screen. But I was able to run into an invisible laser. Eh.

9:21 PM
• Fixed the reason lasers weren’t showing up. Turns out that I was updating them so that every point in the laser was equal to the frontmost point, so it acted like an invisible normal bullet. HOWEVER, now there’s the problem of the player getting hit by lasers that are nowhere near it.

9:29 PM
• While doing some tests on lasers, I discovered that they’re drawn a bit lopsided. Now working on fixing that.

9:35 PM
• Fixed lopsided lazers. Now back to working on the collision checking method.

9:45 PM
• Encountered a bug when freeing lasers from memory. Working on this now.

10:04 PM
• Solved this error! And I also learned a bit about C++ on the way! :D Now back to fixing the collision checking code~

10:34 PM
• Finally figured out point-line collision, and implemented it. Now laser collision detection is working completely correctly!

11:05 PM
• Added some stuff for canceling lasers, but it got screwed up and causes seizure time and heap corruption. Since my time is up for the day, I have no choice but to leave this off until tomorrow. No release today since the release is broken.
• Stopped programming. Time Spent: 2:41
Day 7 (7/31)

10:25 AM
• Started programming.
• Fixing that screwageness from last night.

10:33 AM
• Fixed.
• Now finishing up lasers, e.g. making it so that points of the laser that are “off” actually act like they’re off.

10:53 AM
• Made a bit of progress towards that, although it causes non-game-crashing seizure time right now.
• Stopped programming. Time spent: 0:28
11:39 AM
• Started programming, still trying to make lasers split properly.

11:50 AM
• Rejoice! Lasers now split properly! In other words, sinuate lasers are now pretty much completely functional! :D

12:06 PM
• Fixed laser canceling and related effects.

12:34 PM
• Played around with lasers a bit, there’s a bit of bugginess in collision checking and they’re not very efficient. Actually, they’re un-efficient. That’s how not efficient they are.
• Stopped programming. Time spent: 0:55
4:03 PM
• Started programming, working on lasers (still). I’m trying to make sinuate lasers more efficient and less clipdeathy, since other lasers inherit a lot of functionality from them.

4:27 PM
• Sheesh! Lasers are so overrated. >:|
• Lasers aren’t as clipdeathy as much anymore, but their cancelling still looks a bit weird. Now I am going to improve that.

4:50 PM
• Lasers’ cancelling seems to work fine now. I am now going to optimize lasers’ code and clean up the debris within it from all the editing and debugging…

5:09 PM
• Programming while listening to Renko sing :U

5:11 PM
• Actually I think this visual bug that I completely failed to mention before which I’m working on isn’t actually a bug, but an artifact. I guess I’ll work on it later, if ever, and start on other types of lasers now.
• Built a release of Inmaku. Time spent: 1:08

6:12 PM
• I decided that lasers are still too clipdeathy. I’m going to fix this later by “extending” the ends of the laser’s graphics (not the actual points) by an amount proportional to the width of the laser, to make up for this clippiness.

Day 11 – Working Day 8 (8/4)
10:28 AM – Using a new format of logging entries that should take less work to maintain. Back to working on lasers; I thought up a new way to program their collision checking that somewhat “works together” with drawing, so it should reduce laser calculation time while making them less clipdeathy and more accurate. Lasers’ clipdeathiness will still be somewhat dealt with, but instead of “extending” the ends of the lasers, I’m just not going to check for collisions at the ends until up to a certain point into the laser.

11:21 AM – Did not implement the anti-clipdeathiness thing yet, but everything else for the new laser-collision-checking thing should be in place. Now debugging.

11:30 AM – Made a silly error of writing past the ends of an array, fixed.

11:48 AM – Problems with collision checking, fixed.

11:55 AM – Problems with drawing, fixed.

12:09 AM – Made a laser-danmaku, there are still problems with the clipdeathiness and they still have no delay. Built a release and stopped programming. Time spent: 1:31
Day 12 – Working Day 9 (8/5)
Total Work Time: 20:59
10:03 AM – Started programming. Doing the finalization of making sinuate lasers less clipdeathy.

10:56 AM – Hooray, anti-clipdeathiness measures are in place and supposedly bug-less, rejoice. Built a release and stopped programming. Time Spent: 0:53
Day 16 – Working Day 10 (8/9)
10:28 AM – I just realized that I don’t track my work on Inmaku’s world, which I do quite passively, and the music and character designs. In the past week, I’ve improved the setting, which includes incorporating bloodtypes, and written backstories (as well as determined actual color, alignment, bloodtype, etc.) for most of the characters in I.L. I’ve also done a bit of research on OpenGL’s stencil buffer, since I’ll need to make use of that for a few fancier effects.

10:31 AM – Started programming. Today, I will clean up my code so SHOT Controllers can be implemented. (A Controller is a Shooter whose sole purpose is to have complex, real-time control on projectiles, control which cannot be predetermined and executed with Precontrollable SHOTs.)

10:53 AM – Still working. Found a fundamental error in the ResizablePointerArray class while making code more efficient.

10:59 AM – Forced sizes of data written to inm01.cfg to prevent cross-platform discrepancies.

11:06 AM – Changed keyboard handling so that the whole keyboard is accounted for, and virtual key values can be used to track key statuses.

11:20 AM – CPU power consumed reduced by 25%, hooray. Next up: static lasers and rays. But that’ll be after lunch. Built a release; stopped programming. Time spent: 0:49
7:28 PM – For some reason Inmaku shows a white screen with an ATI Mobility Radeon 9700 graphics card (Glen’s laptop). There are hints that OpenGL is working properly (fading in and out of the loading screen works, the color buffer is being cleared properly), but textures are being loaded incorrectly. Possible culprits: no hardware support, .gfx unencryption not working properly on other platforms.

7:28 PM – Minor change: forced max delay of bullets to be at least 10.

Day 17 – Working Day 11 (8/10)
1:23 PM – Heh, it’s 1:23. One two three. Started programming.

1:47 PM – Taking a break for lunch. Time spent: 0:24

7:49 PM – Obviously that wasn’t a break (more like leave and abandon Inmaku >w<). Anyways. Back to working on Static Lasers.

??:?? – I think I accidentally abandoned working on Static Lasers, ha.

Day 18 – Working Day 12 (8/11)
12:23 PM – Heh, it’s 12:23. One two, two three. Anyways, started programming.

1:06 PM – KindaWorkingStaticLasers. There’s something about heaps getting corrupted and a bit of seizure time when a Static Laser gets spawned, so I need to look into those.

1:13 PM – Caught a small error in the PPC-handling section of PPs where I left out a break; after setting the velocity of the shot, causing the switch block to go into the next lines of code and try to set stuff to uninitialized values. Also, I forgot to account for the fact that there can also be negative (static) delays when capping max delay, so I had to fix that as well.

1:23 PM – Taking a break. Time spent: 1:00
1:58 PM – Back to programming. I am still fixing the seizure time of Static Laser spawns; it’s not as bad as it was before, but there’s an issue with the laser “twitching” forewards when it’s spawned. Also, the heap corruption somehow fixed itself. Maybe that was just a one-time rare error.

2:12 PM – Lunch. Time spent: 0:14
3:24 PM – Back to programming.

3:33 PM – Figured out the reason the heap corruption only occurred sometimes: it occurs when a Static Laser is deleted. The reason they weren’t automatically being deleted upon exiting the clipping region is because I messed up, and only removed the reference to the shot (containing the laser) instead of deleting it as well, which would have caused a memory leak. Fixing that caused the heap corruption error to appear correctly. Then I fixed the heap corruption thing itself: I was creating one less point than I was supposed to when making a Static Laser, causing the update function to write beyond the bounds of point data arrays.

3:38 PM – The “twitchiness” is probably an artifact.

4:03 PM – The “twitchiness” is NOT an artifact. I can get hit by the “twitchiness demon” from very far away, and I have no idea why this is happening. For both Static and Sinuate lasers, on the very moment their del hits zero, if I’m standing anywhere in the area above it’s spawn point (y < 120 or something) tilted a tiny bit counterclockwise, I get hit by the laser. Even from hundreds of px away. This is very, very troubling and also the reason I hate lasers.

4:07 PM – Also, anticlipdeath measures do not work very well. It’s better for me to just use a texture where the very edges of the texture are the edges of the bullet it encompasses.

4:11 PM – Wtf it’s already 4:11 I have stuff to do that’s not programming today you know! Curse you lasers!

4:17 PM – The “twitchiness” artifact is still there, but I made the collision checking code more robust by replacing a mathematical workaround for an iffy situation with code that explicitly sees that situation as a “special” occasion, and checks collision using different code. This has, as far as I can see, completely removed the getting-hit-by-lasers-from-really-weird-places bug.

4:23 PM – *clips laser while doing test run* ARRRGH

4:28 PM – I will have to redesign laser anticlipdeath measures, as well as possibly look into that “twitchiness” artifact, which still bothers me since it means something’s not being done correctly (or maybe it’s just a significant figure error). But I have raged enough for now, so I am signing out. Stopped programming. Time spent: 1:04
4:41 PM – Built a release, even though it’s worse than the last release (due to clipdeathiness). Har har.

Day 19 – Working Day 13 (8/12)
4:46 PM – White screen also showing up on my new free laptop (!), but I thought about it and I figure it’s because their graphics cards need to have textures with sizes that are powers of two (my graphics card is beast enough to not need that :p).

4:54 PM – Tried using powers-of-two-sized textures and it’s working. However, my free laptop runs Inmaku as fast as it can! It’s not being bound by v-sync. (Glen’s laptop does not have this problem.)

5:32 PM – Getting closer to doing v-sync independent framerate limiting, using QueryPerformanceCounter. I have a resolution of 241240000 per second (which is still somehow not a multiple of 3) :V

5:47 PM – Unfortunately, that lagged. :|

5:54 PM – Putting off framerate limiting until later, it works properly on most newer graphics cards anyways. At least I figured out the white screen of doom problem. Stopped programming. Time spent: 1:08
Day 20 – Working Day 14 (8/13)

Total Work Time: 26:31
10:00 PM – Implementing new anticlipdeath method. This method is not as accurate as my previous method, but it does allow a much larger leeway between the ends of the lasers and getting hit by it (10% leeway in the front and the back).

10:36 PM – Whew, I finished anticlipdeath and it works properly as far as I can see! Rejoice. Anyways, the last type of laser is the ray, which has a special drawing function in addition to a special movement function. I’ll do this tomorrow morning, or something… Built a release. Time spent: 0:36
Day 23 – Working Day 15 (8/16)
12:57 PM – Started on Rays.

1:16 PM – Lunch. Time spent: 0:19
6:27 PM – Continued working on Rays.

7:07 PM – Wow, the update function works properly on the first try. I am amazed. Anyways, I now have to figure out how cancelling and stuff works for Rays, and then make a draw function for it, and then make precontrol order types that change Rays’ stuff.

7:25 PM – Dinner. Time spent: 0:58
8:30 PM – Back from dinner, still fine-tuning Rays.

9:24 PM – Almost done with Rays; now all I need to do is make functions that let me modify the angle and extending speed of Rays, as well as implement precontrol order types for Rays. Time spent: 0:54
Day 27 – Working Day 16 (8/20)
11:32 AM – Doing final Ray touchups from last entry.

11:44 AM – I need a larger assortment of PP death commands, but I have to finish the Alpha Shooter class first.

11:50 AM – Implementing Shooters.

12:27 PM – Shooters actually work flawlessly, and I am surprised. Well, I’m not doing anything super-complicated with them (or making Controllers out of them) yet, so I suppose success was not unexpected. I will now set to work implementing several types of PP death commands.

12:34 PM – Next up are Cancellers. Cancellers cancel bullets, obviously, but they do so in a pattern. There’s three patterns: Rectangle, Circle, and Angle. Okay, so they’re not really patterns, or anything. Basically I can cancel all bullets in a rectangle perpendicular to the axes, between certain distances from the center of the Canceller, or within a specific angle of the Canceller. Cancellers are controlled by Shooters.

12:43 PM – I noticed a pattern of putting a shouldRemove() type thing in most classes, especially ones that belong in a rparray. Hence, I made a base base base class called Removable, that, of course, is the base class of everything with a shouldRemove function.

1:57 PM – I forgot to indicate that I started working on Cancellers. Well, now you know.

2:02 PM – Stopped for lunch. Time spent: 2:30
3:11 PM – Back to programming.

3:31 PM – I made bullet death more robust, so that it is now a function with arguments for a fade effect and convert to item.

3:49 PM – Left for piano class. Time spent: 1:47
6:26 PM – Started programming again. Still working on Cancellers. This is actually easier than I expected because when I first conceived Cancellers, static lasers and Rays had a different theoretical method of updating, which would have made Cancellers much more complex. However, they don’t use that method. Yay.

7:15 PM – Whoa I made a Shooter-Controlled Canceller for when the player dies to have a radiate-out-from-the-player cancelling effect, and it worked and looked really cool. >:3

7:17 PM – SINLASERs, STALASERs, and RAYs each have different movement functions which deal with their points differently, which means I have to program different autocancelling/cancelling checking methods for them.

7:32 PM – Left for dinner. Time spent: 1:06
10:22 PM – Autocancelling is now what happens when a bullet is cancelled on or before the moment that it would become cancelable; i.e., when a bullet’s delay is still active or just reached zero, or when a point of a laser that has not been “in effect” yet becomes “in effect.” It’s not a global variable and is dictated by Cancellers.

10:46 PM – New cancelling/autocancelling has been implemented 100% for SHOTs. Cancelling works for sinuate and static lasers but only partially for rays, and none of the above have autocancelling. Additionally, Rays still need their pseudo-delay effect, and all lasers need a true delay effect.

11:08 PM – Sinuate laser autocancelling is done. Tomorrow: static laser autocancelling, ray cancelling and autocancelling, ray pseudodelay, and laser true delays. Built a release since Cancellers are just too cool. Time spent: 0:46

Day 28 – Working Day 17 (8/21)
4:54 PM – Started programming. I will do static laser autocancelling first, then ray cancelling and autocancelling, then ray fake delay.

5:33 PM – Cleaned up cancelling code in general a lot while trying to figure out why a cancel effect was appearing even though there shouldn’t be one, due to autocancelling. The reason was because the delay of the bullet was 0, so it wasn’t thought of as an autocancellable bullet and instead as a normally cancelable bullet. A bullet is autocancellable the frame its delay becomes zero from something else, which was never triggered since the bullet delay was always zero. Solution: make bullet autocancellable on creation if it is created with zero delay. This somewhat applied to lasers as well; the first point of the laser at index zero would never be in the position to be autocancelled, since Shooters would apply first, firing the laser, then the laser would update, causing the first point to become “exposed” and hence not autocancellable, and then Cancellers would come into effect to cancel/autocancel stuff.

5:33 PM – I need to tweak update order for stuff to make more sense; for example, Shooter updating should come after projectile updating, and cancellers after that: Projectile-Shooter-Canceller. This would get rid of the laser zero-delay problem and logically makes more sense than Shooter-Projectile-Canceller, where the max delay of a bullet would never be drawn.

5:42 PM – Taking a break, bye. Time spent: 0:58
5:42 PM – One last note: laser segments that are perfectly vertical cannot be collided with for some reason, and I have to go and fix that later.

6:13 PM – Back from break, back to programming.

6:25 PM – Fixed vertical-segments-not-hitting-player thing, and finished static laser autocancelling. Now for ray cancelling and autocancelling.

6:42 PM – Dragged off the computer nooo

9:24 PM – Started programming again.

9:51 PM – Done with all lasers’ cancelling and autocancelling, and also fixed the random not-colliding bug! There’s still two things to do with lasers: define better graphics rectangles for them, and make Ray pseudodelay. But I have to do my vocab. Built a release. Stopped programming. Time spent: 0:27
